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Abstract

This paper develops a dynamic model for pressure

sensors in continuum and rarefied flows with

longitudinal temperature gradients. The model was

developed from the unsteady Navier-Stokes momentum,

energy, and continuity equations and was linearized

using small perturbations. The energy equation was

decoupled from momentum and continuity assuming a

polytropic flow process. Rarefied flow conditions were

accounted for using a slip flow boundary condition at

the tubing wall. The equations were radially averaged

and solved assuming gas properties remain constant

along a small tubing element. This fundamental solution

was used as a building block for arbitrary geometries

where fluid properties may also vary longitudinally in

the tube. The problem was solved recursively starting at

the transducer and working upstream in the tube.

Dynamic frequency response tests were performed for

continuum flow conditions in the presence of

temperature gradients. These tests validated the

recursive formulation of the model. Model steady-state
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behavior was analyzed using the final value theorem.

Tests were performed for rarefied flow conditions and

compared to the model steady-state response to evaluate

the regime of applicability. Model comparisons were

excellent for Knudsen numbers up to 0.6. Beyond this

point, molecular affects caused model analyses to
become inaccurate.
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Introduction

With development of advanced hypersonic vehicle

concepts, reliable measurement of onboard trajectory

parameters from pneumatic sensors is highly desirable,

but measurement of aerodynamic properties on

hypersonic vehicles presents formidable challenges. The

hostility of the sensing environment precludes intrusion

into the flow, and measurements must be obtained via

remote sensors. This hostile environment requires using

sizable lengths of pneumatic tubing to transmit pressure

from the surface to the remotely located transducer. For

hypersonic conditions, nominal spectral distortion and
acoustical resonance affect the measurements. In

addition, large temperature (T) gradients induced by

boundary-layer heating induce molecular effects where

gas molecules adjacent to the tube wall creep from the

cold end of the tube to the hot end. Furthermore, under

low pressure conditions, such as those experienced at

very high altitudes, the tube flow becomes so rarefied

that the fluid slips at the tube wall.

To date, no theoretical model describing influence

of these rarefied flow phenomena on pressure

measurements is available in the scientific literature. To

generally quantify the dynamic behavior of pressure

sensors for these hypersonic conditions, NASA Dryden

Hight Research Center, Edwards, California, initiated

research to develop an accurate frequency response

model that is mathematically invertible. That is, given

the measured pressure at the pressure sensor, the model

could predict the pressure input which occurred at the

surface. This invertible model could compensate for

pneumatic measurement distortions which cannot be

mitigated by the layout of the pneumatic hardware.

This paper describes a general dynamic response

model for pressure sensors and applies to continuum

and rarefied flow conditions. The model allows for large

temperature gradients on the order of 1000 °R/ft with a

maximum Knudsen number, K, of approximately 0.60.

The model was verified using steady-state and dynamic

laboratory experiments. Test results and regimes of

applicability are also presented. Finite difference

methods were not desirable for this application. Instead,

the equations of energy and motion are decoupled and

reduced to a one-dimensional boundat 3' value _roblem.

The boundary value equations are solved assuming that

along a small element gas properties remain constant,

and a fundamental solution is developed for this small

element. Then, the fundamental solution is used as a

building block for a recursive solution method which

allows for complex geometries where fluid properties

and tubing geometry can vary longitudinally. The

problem is solved recursively starting at the transducer

end and working toward the surface end of the tube.

Using these recursive formulae, solutions for arbitrary

geometries and longitudinal temperature profiles can be

constructed. The resulting model is fully invertJble.

Background

For full continuum flow which occurs at moderate

pressure levels, fluid viscosity causes the gas to stick at

the wall, resulting in the classical no-slip boundary

condition. On the other hand for rarefied flow

conditions, molecular effects become important, and the

no-slip boundary condition is no longer valid (ref. 1).

For rarefied flow conditions, fluid elements do not stick

to the wall as they would in continuum flow. Instead,

fluid elements slip along the wall, resulting in a flow

regime that is referred to as slipflow. The magnitudes of

the molecular effects are proportional to ratio of the

molecular mean free path to the characteristic scale

length of the flow--Knudsen number. Values of

Knudsen numbers less than 0.01 indicate that the flow

conditions are continuum and that molecular effects

may be ignored. Values between 0.01 and 1.0 indicate

the slip flow regime where the flow has elements of

continuum and molecular dynamics. Values exceeding

1.0 indicate a free-molecule flow regime, and

continuum affects can be ignored.

The mean free path of the fluid molecules, _., is the

average distance that each fluid particle travels between

successive collisions with other fluid particles. If

characteristic scale of the system were the tube radius,

then the Knudsen number can be approximated by the

expression given in equation (I) (ref. 1).

"/Y (1)
_:=_R P

where _ is the constant, D is the dynamic viscosity,

Rg is the universal gas constant, R is the tube radius,
T is the temperature, and P is the pressure.

Clearly, Knudsen number is an inverse function of

pressure. Thus, rarefied flow phenomena are inherently

associated with high Knudsen numbers. For

conventional aeronautical applications, the Knudsen



numbers are always below 0.01. For hypersonic and

orbital applications, Knudsen numbers from 0.05 to

0.20 can be obtained along the flight profile at very high

altitudes. Figure 1 illustrates these flow regimes.

The problem of predicting tube flow dynamics has

been studied extensively. For nonrarefied, constant

temperature conditions, Iberall developed a spectral

technique for predicting response lags for sinusoidal

inputs and lightly damped configurations (ref. 2). Lamb

adapted the work of Iberall to predict step-input rise

times for highly damped configurations (ref. 3). Lamb's

theory was also applied to predicting steady-state delays

for constant ramp inputs. Schuder, et al., (ref. 4) and

Hougen, et al., (ref. 5) developed closed form frequency

domain solutions for simple tubing geometries and

constant wall temperatures. Bergh, et al., (ref. 6)

extended the analyses of references 4 and 5, to develop a

recursion formula for complex geometries. The work
detailed in reference 6 is the state-of-the-art for

predicting tubing responses to constant wall

temperatures, T w, and continuum flow. Tijdeman

extends the model boundary condition to allow

for high-speed surface cross flow (ref. 7). He also

presents a succinct summary of existing tube response

theories (ref. 8).

Parrot, et al., investigated the dynamic transmission of

sound in a simple geometry tube which was subjected to

very large temperature gradients (ref. 9). These tests

were performed for ambient pressure levels, and rarefied

flow effects were not considered. Knudsen (ref. 10) and

Kennard (ref. 1) investigated tube flow for rarefied

conditions with large temperatures. These analyses,

however, have been performed only for simple

geometries and for steady-flow conditions. A review of

the literature did not reveal an unsteady response model.

References 1 and 10 present excellent overviews of

theoretical and empirical results for steady-state tube
flows in rarefied conditions.

Along an unequally heated gas boundary, Maxwell's

kinetic theory (ref. 1) predicts that gas molecules

originating in the hot region of the tube have higher

kinetic energy than molecules originating from the cold

region. As a result, such molecules recoil more strongly
than molecules from the cold side of the tube. The net

result is that the gas acquires a longitudinal momentum

in the hotter direction. This net momentum gain causes

the gas molecules at the wall to creep from the cold end

to the hot end of the tube. To balance this creep, gas

molecules in the center of the tube must migrate toward

the colder end of the tube. This opposing flow

equilibrium results in establishment of a steady-state

pressure gradient. The cold region of the tube has a

lower pressure than the hot region, and no net cross-
sectional flow exists in the tube.

In his analyses, Maxwell determined that in the free

molecular limit the normalized ratio of the creep-

induced pressure gradient was one-half of the

normalized temperature gradient. For example,

OP _T

0x 1 _x
m

P 2 T

(2)

where OP/Ox is the induced longitudinal pressure

gradient, P, is the nominal pressure in the tube, OT/3x

is the longitudinal temperature gradient, and T is the

nominal temperature in the tube. For conditions which

lie somewhere between the free molecular regime and

continuum flow, the pressure gradient induced by

longitudinal temperature gradients is less than one-half

and is a strong function of Knudsen number (refs. 1

and 10).

For slip flow conditions, the primary molecular effect

is the fluid movement at the wall boundary. The fluid

velocity at the wall boundary can be decomposed into

two parts: slip velocity and thermomolecular creep

velocity. The slip velocity, Ustip, (ref. 1) is proportional

to the shear stress at the wall, and for laminar flow may

be written in terms of the velocity gradient as

___0____v
Ustip Or w (3)

where U is longitudinal velocity, and r is the radial
coordinate.

The parameter, O, is referred to as the slip distance

and is dimensioned in units of length. The slip distance

is on the order of the mean free path of the flow (ref. 1).

The ratios of slip distance to mean free path for various

channel materials and gases are tabulated in references 1

and 9. For the flow of air over machined brass or steel,

the ratio is 0.995; for air flowing over glass, the ratio
is 1.24.

The molecular creep velocity is one of the more

peculiar phenomenon which occurs at low pressure.



Kennardshows that the creep velocity is directly

proportional to the longitudinal temperature gradient

and inversely proportional to the local pressure (ref. l).

Its magnitude can be approximated by the expression

Ucreep 3 gOT/Ox 3 [toRg OT (4)
= 4 PoT(x) =4 PO OXw

where la0 and P0 are longitudinal average viscosity

and pressure in the tubing. At the wall boundary, the

velocity is the sum of the two terms. For example,

U(x, R, t) = Ustip + Ucree p

OU 3 goRg OT/_x

(5)

For slip flow conditions, the condition given

by equation (5) replaces the traditional no-slip,

U(x, R, t) = 0, boundary condition used in continuum
fluid mechanics. Other than this modification, the

classical equations of fluid motion apply in this flow

regime (refs. 1 and I 1).

Mathematical Analysis

This section presents the mathematica] analyses used

to develop the rarefied flow dynamic model. The

boundary value equations describing the pressure wave

propagation in the tube are presented first. Next, a

recursive solution method for these boundary value

equations is stated. Finally, the steady-state behavior of

the frequency response model is analyzed. Appendixes

A, B, and C present detailed development of all

mathematical analyses.

Derivation of the Boundary_ Value Equations

The model is derived from the unsteady, three-

dimensional Navier-Stokes equations which are

linearized using a small perturbation assumption. The

energy equation is decoupled from the equations of

momentum and continuity, assuming the longitudinal

wave expansion process within the tube is polytropic

(refs. 1-7, 11, and 12). For a polytropic process, the

relationship between pressure, temperature, and density

is described by the simple model

P = K p_ = K' T _/(_- 1) (6)

where

P = pressure

K = proportionality constant for density

K' = proportionality constant for temperature

= polytropic expansion parameter

p = density

T = temperature

Limiting values for _ are given by 1 < _ < T where

= 1 corresponds to an irreversible isothermal

expansion process, and _ = T corresponds to a

completely reversible isentropic expansion process.

Using the polytropic flow assumption allows decoupling

the energy equation from the equations of momentum

and continuity without loss of generality. Appendix A

presents the variation of _ as a function of input

frequency and the fundamental flow parameters. The

momentum equation is integrated to give the local flow

velocity in terms of the longitudinal pressure gradient.

The slip flow boundary condition (eq. (5)) is used to

solve for the constant of integration.

The result is averaged over the cross-section of the

tube to give a radially averaged flow equation. The

resulting equation is coupled with the radially averaged

continuity equation to develop a wave equation which

describes the pressure propagation in the tube for

rarefied flow conditions. Similar arguments are used to

develop a downstream longitudinal boundary condition.

The upstream pressure is assumed to be a prescribed

input. The resulting boundary value equations,

wave equation

2

O2p(x) = I°_ _f l P(X)ox2

downstream boundary condition

(7)

_P

OXlx = L

2 2

OJ Fp V PL
- -y AZ

(8)

P(0, Co) - P0(¢o)



propagation velocity

0P

0x

and upstream pressure input, P0(o), are prescribed.

(See appendix A.)

Boundary Value Equations Solution

The boundary value equations are solved in the

frequency domain. Temperature and gas properties are

assumed to remain constant along the length of the tube

to give a fundamental solution where the complex

spectra are given as a function of the sensor geometry,

the frequency of the input sinusoid, and the propagation

factor. This solution is detailed in appendix B.

rp (10) pL(tO)

[]_ J0[a]-OR Jl[a].o _-1 2 j,[.]}{<,,,o,+o;,,,o0+,o

where

V = transducer volume

c = sonic velocity

A c = tube cross-sectional area

L = tube length

PL = pressure at the transducer

Po = surface pressure

_:p = rarefied flow correction factor for the bulk
VlSCOSlty

Uavg = longitudinally averaged velocity

ta = radian frequency

a = shear wave number

OP = longitudinal pressure gradient

Ox

Po = mean pressure in the tubing

The propagation factor, Fp, given by equation (10) is
a new result not presently available in the scientific
literature. This factor accounts for molecular effects and

frictional damping in the tube and is a generalization of

the work presented in references 6 and 7. Parameters J0

and J1 are the Bessel functions (ref. 13) of the zeroth
and first orders.

(11)

I '= P°(°) L VoF ,-

_cosh I¢oF p c] + --- Psinh/toFAcC k P

This fundamental solution for constant temperature

and tube radius is used as a building block for complex

geometries in which the wall temperature, fluid

properties, and tube geometry vary longitudinally. For

longitudinal variations within the tube, the problem is

solved recursively _tarting at the transducer end and

working toward the surface (external) end of the tube.

As developed in appendix B, the solution at the ith
node is

Pi(to) (12)

Pi- l (°)

c°sh[t_rP' _l+_ v'ir'v_sinh[_rP'_]¢i.J _ Ci

where the effective volume, Ve, accounts for the

entrapped volume at the ith node plus the impedance of

the downstream tubes and volumes. The general end-to-

end frequency response is given as the complex product

of the frequency responses at the individual nodes.

PL(O_) Pl(ta) P2(O) Pn_l(OO) Pn(o0)

po(ta) = pO(tO) pl(¢O) ... Pn_2(O0) Pn_l(tO) (13)

[ Li]v,r. r L]i=l cosh o_l"pi _ii +03 Act- --sinh/t0Fci L Pi _ii



Equations (11) through (13) allow for a finite-element

solution of the boundary value problem. These

equations are used to generate the frequency response

solutions for complex geometries or for longitudinal

temperature distributions. If molecular effects are

ignored, and a constant temperature profile is assumed,

these equations are mathematically identical to the

recursion formulae developed in references 6 and 7.

Steady-State Response of the Dynamic Model

Maxwell's analysis predicts that in the presence of

large temperature gradients and rarefied flow, the

equilibrium pressure gradient in the tube is nonzero.

The model (eqs. (I0)- (13)) exhibits a similar steady-

state behavior. Equilibrium behavior of the model for

rarefied flow conditions is best understood by looking at

the momentum equation at a given longitudinal cross-

section. The normalized steady pressure gradient can be
written as a function of Knudsen number and

normalized temperature gradient.

_P _T
_'_ 61¢o2 _-_

(14)

l 17 rc l+4e_: 0

(See appendix C.) In equation (14), _ is the ratio of the

slip distance to the mean free path and, for this analysis,

can be assumed to be unity. Equation (14) is extremely

important because Maxwell predicts that in the free-

molecule limit (Knudsen numbers approaching infinity)

+ = _ (15)

Clearly, equation (6) does not approach a limit.

Therefore, the model has an upper boundary for which

the slip flow assumptions are valid. Because it is

extremely difficult to conduct controlled dynamic

experiments under rarefied flow conditions, steady-state

behavior of the model is the only feasible means of

evaluating the validity and range of applicability for the

slip flow assumptions used in deriving the dynamic

model. Empirical validation of the model is described

next.

Experimental Apparatus and Procedures

The assumptions used in deriving the model and the

flow regimes to which the model applies were evaluated

using a series of laboratory tests. First, dynamic

frequency response tests were performed for continuum

flow conditions at room temperature and in the presence

of large temperature gradients. Results of these tests

demonstrated the validity of the polytropic energy

analysis and the recursive formulation for temperature

gradients in the tubing. Next, steady-state response tests

were performed for rarefied flow conditions. These

tests were used to verify the slip flow assumptions

used in deriving the boundary value equations and

to establish a regime of validity for the model. Results

from these experimental tests are compared to analytical

predictions in the Results and Discussion section.

Dynamic Frequency Response Tests

Frequency response measurements were gathered

using a test plate mounted at the end of the sound

chamber. Figure 2(a) presents a schematic of the test

configuration, and figure 2(b) shows an overview of the

test equipment layout. Reference sound pressure levels

impinging on the plate were measured by a constant

current piezoelectric microphone mounted flush to the

plate. The response of a test configuration, which

consisted of a flush surface port and a section of brass

tubing, was measured by an identical microphone

mounted in a housing at the end of the tubing.

Frequency response was evaluated by comparing the

output of the test microphone to the output of the

reference microphone. For these tests, a broad-band

wave form was generated by a microcomputer outfitted

with a 12-bit digital-to-analog (D/A) conversion board,

amplified with commercial stereo equipment, and used

to excite a large speaker inserted in an anechoic

chamber. The speaker is shown in the sound chamber in

figure 2(c). Speaker volume was controlled using a

voltage attenuator on the output voltage from the

microcomputer. By changing the speaker sizes and

output roll off, frequency ranges from approximately

0.50 to 2000 Hz could be accurately evaluated.

High-temperature gradients were induced by a heater
made from a 314-in. diameter aluminum rod heated with

electrical resistance heating tape. The rod was bored

with a hole its entire length, and the section of brass

tubing to be evaluated was press-fit into the hole. The

temperature of the heating

temperature controller and
One end of the brass tube

rod was regulated using a

a feedback thermocouple.

was soldered flush to the

surface port in the test plate, and the other end was fitted

to the microphone housing. Copper-constant (Type T)



thermocouples(TC) were used to sense the temperature

at the surface port, the microphone housing, and four

points along the length of the tube. Thermocouples were

joined to a single electronic reference junction, and their

readings were selectable using a rotary switch. In the

ranges tested, the estimated accuracy of the

thermocouple measurements was approximately :1:2 °F.

These ranges were based on the manufacturer's

specifications. Figure 2(c) also shows the heater

configuration and the test plate arrangement.

Output signals from the reference and test

microphones were amplified and sampled at 24 kHz by

a 16-bit analog-to-digital (A/D) conversion board in the

microcomputer. Direct current (de) offsets in the

microphone outputs were removed by alternating

current (ae) coupling the microphone outputs to give a

minimum response frequency of approximately

0.05Hz. The flat frequency responses of the

microphones and signal conditioning extended to well

beyond 10kHz. At nominal sound volume levels,

measurements showed that the sound pressure level

(SPL) in the chamber was approximately 145 dB

(7.5 psf). This SPL is well within the linear response

regions of the reference and test microphones. In the

linear range these microphones have an unamplified

response sensitivity of 10.4 P volt/psf. Using amplifier

gains settings of 10 and a full-scale A/D range of

:t: 1 volt, the nominal resolution of the microphone least

significant bit (lsb) was approximately 0.0029 psf/lsb.

The broad-band wave form used to excite the speaker

was generated by a nonlinear phase-modulated cosine
series of the form

N h

i=O NhJ
(16)

where f0 is the minimum frequency in the wave form,

_if is the spacing between harmonics, N h is the number

of harmonics in the wave form, t is time, and Nh_f is

the maximum excited frequency. The nonlinear phase

modulation ensures that energy is distributed uniformly

in the time and frequency domains (ref. 14) and that the

wave form will be physically realizable.

Figures 3(a) and 3(b) show the time history and

spectra of a sample wave form. Large sample runs

(typically 100,000 data points) were taken for each

test, and an ensemble of coarse transfer functions

was evaluated using a fast Fourier algorithm with a

4096-point data window. The coarse transfer functions

resulting from each data window along the time history

were ensemble averaged for the entire data record.

Ensemble averaging helps to mitigate the affects of

resolution and random measurement errors and

produces a clean transfer function output.

For each data run, ambient pressure levels were

recorded with a hand-held manometer, and a baseline

data set at ambient temperature levels was taken. The

heater was turned on with the required setting selected

on the temperature controller, and the system was

allowed to stabilize. The frequency response data were

obtained, and the temperature readings at each of the six

thermocouples was recorded. The temperature was then

raised to the next condition and allowed to stabilize.

After data at the maximum temperature which could be

obtained by the system, approximately 650 °F, was

recorded, the system was allowed to cool. Next, the tests

at lower temperature settings were repeated.

Steady-State Response Tests for Rarefied Flow

Condition_

Figure 4(a) shows the apparatus layout for the steady-

state response tests. These tests were used to verify the

steady-state response of the analytical model for

rarefied conditions and to evaluate the upper limit of
Knudsen numbers for which the model is valid. As

mentioned in the Background section and appendix C,

the model theory predicts that in the presence of large

temperature gradients and rarefied flow conditions, gas

adjacent to the tube wall creeps from the colder region

to the hotter region. The result is an opposing flow

which establishes a steady-state pressure gradient

within the tube, with the cold region of the tube reading

lower temperatures than the hot region. These tests

reproduced those conditions.

The steady-state response tests were performed in an

evacuated vacuum oven. Here, 3/4-in. diameter

aluminum rods were bored with holes, and an

assortment of brass tubes of varying diameters and

lengths was press-fit into the holes. As the oven was

heated, the aluminum rods provided a thermal mass to

distribute the heat evenly along one end of the tubing.

Type T thermocouples bonded to each end of the tube

were used to sense the absolute temperatures and the

temperature gradient along the tube. As before, the

thermocouples were joined to a single electronic



referencejunction, and their readings were selectable

using a rotary switch. Accuracies were similar to those

values obtained in the frequency response tests,

Thermocouple wire was passed from the vacuum

chamber to the thermocouple reference panel using a

hermetically sealed thermocouple fitting on the back of

the oven.

The heated end of the tube was open to the oven

chamber, and the cold end was hermetically bonded to a

compression fitting that allowed access to the tube from

outside of the evacuated vacuum chamber. The chamber

pressure was measured using a highly accurate Vernier

manometer, and the pressure differential in the tubing

was measured using a differential McLeod gauge

(ref. 15). The oven vent was branched off to the

manometer and to the reference side of the McLeod

gauge and pressure valve was used to isolate the two

instruments when readings were being taken. A close up

of the test configuration showing the attached

thermocouples and the pressure fittings is shown from

the front view in figure 4(b) and from the rear view in

figure 4(c).

Tests were conducted by first recording the zero

differential pressure in the tube at ambient temperature

and pressure. The heater was turned on with the

required setting selected on the temperature controller.

Next, the system temperature was allowed to stabilize.

Then, the chamber was evacuated to the approximate

desired pressure level, and the system was sealed. The

hot and cold end temperatures were recorded using the

thermocouples. At this point, the chamber pressure was

recorded using the Vernier manometer, and the

differential pressure in the tubing was recorded using

the McLeod gauge. At the end of each data point, the

temperature setting was maintained constant. In

addition, chamber pressure was adjusted to the new

desired value. The system was allowed to stabilize, and

a new set of readings was taken.

For each temperature setting, approximately

30 pressure test points were recorded, starting at the

lowest pressure and working toward higher pressures.

At the end of each set of runs, the system was vented

and allowed to cool to ambient temperatures. Then, a

new zero differential pressure reading was taken. The

pre- and post-test zero readings were used to correct the

differential pressure measurement for bias offsets in the

McLeod gauge. Standard accuracy for a Vernier

manometer is on the order of 10-25 microns of mercury

(0.030-0.080 psf). The accuracy of the differential

McLeod gauge is on the order of 5-10 microns of

mercury (0.015-0.030 psf) (ref. 15).

Rgsults and Discussion

Results of the frequency response tests are described

first. Comparisons to the analytical model for selected

geometries and temperature profiles are presented. Next,

the results of the steady-state response tests are

presented. These data were parameterized as a function

of Knudsen number and compared to the predictions of

the analytical model. From the comparisons, a range of

valid Knudsen numbers for the model has been

established.

Frequency Response Tests

Sixteen data runs were performed. There were four

temperature profiles for each of the two tube

geometries. Each test was repeated twice. All of the tests

were performed using a broad-band wave form with

spectral energy from 10 to 4000 Hz. Table 1 presents the

frequency response test matrix, including the tube

geometry and the temperature readings for each of the

six thermocouples bonded to the tube. For these tests,

the maximum attainable heater temperature was

approximately 650 °F. This configuration resulted in a

maximum temperature gradient of approximately

1300 °F/ft.

Temperature readings from the repeated data runs

were averaged and interpolated to give idealized

temperature profiles along the length of the tube. These

profiles, labeled A, B, C, and D, are presented in

figures 5(a) and 5(b) for the 0.066- and 0.033-in.

diameter tubes. Using these idealized temperature

profiles, the theoretical frequency responses of the test

geometries were evaluated using the recursive formula

of equation (13).

The computations were basically insensitive to the

number of grid points. This insensitivity is illustrated in

figure 6 where the frequency response of the 0.066-in.

diameter tube was evaluated, assuming temperature

profile D. These computations were performed with 5,

10, 20, 50, and 100 equally spaced nodes. Beyond

10 elements, little difference exists in the computations.

Beyond 20 elements, the solutions are virtually

identical. Thus for this analysis, 20 solution elements



were used. The resulting calculations are shown in

figure 7(a) for the 0.066-in. diameter tube and

figure7(b) for the 0.033-in. diameter tube for

temperature profiles A, B, and C.

The overall effect of increasing temperature gradients

is an increase of the phase delay of the response and a

shift of the spectral harmonics to higher frequency and

lower magnitude. This effect is verified extremely well

by the data. The results are presented in figures 8 and 9

for the 0.066- and 0.033-in. diameter geometries. Here,

the model calculations are overplotted against the

transfer function data averaged from the repeated runs

for the various temperature profiles of figure 5. The

agreement is excellent for all of the cases. Up to the

approximately 2000-Hz limits of the data, the frequency

response is predicted to within the noise limits of the

basic measurement. That is, the locations of the

harmonics are predicted to within 1-2 Hz, and the

spectral magnitudes are predicted to within 2 dB along

the entire frequency band. Clearly, the energy analysis

and recursive formulation are entirely valid for the

temperature ranges presented.

Steady-State Response Tests for Rarefied Flow

These steady-state response tests were performed to

assess the upper limit of Knudsen number for which the
rarefied flow terms in the model are valid. For the

steady-state tests, tube diameters from 0.092- to

0.014-in., temperature gradients as high as 950 °F/ft,

and chamber pressures as low as 100 microns of

mercury (0.28 lbf/ft 2) were tested. The resulting

Knudsen numbers varied from zero to approximately

10. Table 2 presents the test mamx which was

investigated.

Rearranging equation (14) to collect Knudsen number

gives

T _P/_x 6_¢o2
(17)

P _T/_x re(1 + 4 e t¢O)

Equation (17) suggests a manner to display the results

of the steady-state response tests. Approximating the

derivatives in equation (17) by differences yields

Phot - Pcold

_P/_x 1
p _ (Phot + Pcold)

= -= _ (18)
OT/Ox Tho t - Tcold

T 1
(Thot + Tcotd)

These data can be collapsed to a single curve by

plotting the rarefied flow static pressure parameter, W,

against Knudsen number averaged over the hot and cold

ends of the tube. These results are plotted in figure 10

along with equation (17) evaluated using 1.0 for the

proportionality constant, e.

For pressures below 350 microns (0.28 lbf/ft2), the

vacuum oven chamber pressure was difficult to

maintain, and the data are somewhat suspect. However,

these data appear to approach the free-molecule limit of

0.5 (eq. (2)). The comparison to the model is excellent

for Knudsen numbers up to approximately 0.6. Because

equation (17) was derived directly from the fundamental

solution of the dynamic model (eq. (11)), the model

appears valid for most of the slip flow regime. For

t¢ > 0.6, free-molecule affects dominate, and the model

rapidly diverges from the data. This Knudsen number is

the upper boundary on the model's usefulness. For

aeronautical applications, this Knudsen number occurs

only under near-orbital conditions (fig. 1).

Concluding Remarks

Measurement of aerodynamic properties on

hypersonic vehicles presents formidable challenges. The

hostility of the sensing environment disallows intrusion

into the flow. For this reason, measurements must be

obtained through remote sensors. In addition, sizable

lengths of pneumatic tubing must be used to transmit

pressure from the surface to the remotely located

transducer. Because pneumatic measurements are

necessary to compute vital flight mechanics parameters.

such as angle of attack, dynamic pressure, and Mach

number, or to evaluate surface pressure distributions, it

is essential that the dynamic behavior of tubing

transducer measurement configurations be well

understood for hypersonic flight conditions. These

conditions include high surface temperature gradients
and rarefied flow.

This paper develops a general dynanuc response

model for pressure sensors in high Knudsen number

flow with large temperature gradients. The model

applies to continuum and rarefied flow conditions and

allows large temperature gradients within the pneumatic

tubing. The sensor response model is developed from

the Navier-Stokes equations and linearized by small

perturbations. It decouples the energy equation by
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assumingthat the waveexpansionin the tubeis
polytropic.

The model is converted to a one-dimensional

boundary value problem by radially averaging flow

properties. The boundary value equations are solved in

the frequency domain, assuming that the gas properties

remain constant along the length of the tube. This

fundamental solution is used as a building block for

complex geometries in which the fluid properties in the

tube vary longitudinally. The problem is solved

recursively starting at the transducer end and working

toward the surface end of the tube. Using the recursive

formula, solutions for arbitrary geometries and

longitudinal temperature profiles can be constructed.

The steady-state behavior of the model is analyzed

by applying the final value theorem to the

recursive equation. The resulting expression is
nondimensionalized and written as a function of

Knudsen number. The steady-state response function is

used to evaluate the regime of applicability of the

dynamic model.

The assumptions used in deriving the model and the

flow regimes to which the model applies were evaluated

using a series of dynamic and steady-state laboratory

tests. Dynamic frequency response tests were performed

for continuum flow conditions and temperature

gradients as large as 1300 °F/ft. Steady-state response

tests were performed for rarefied flow conditions with

chamber pressures as low as 100 microns of mercury

(0.28 lbf/ft 2) and temperature gradients as high as

950 °F/ft. The resulting Knudsen numbers varied from

zero to approximately 10.

The dynamic frequency response tests demonstrated

the accuracy of the polytropic energy analysis,
fundamental solution, and recursive formulation for

temperature gradients. Increasing temperature gradients

resulted in an increase in the phase delay of the response

and a shift of the spectral harmonics to higher frequency

and lower magnitude. This effect is verified extremely

well by the data. Up to the approximately 2000-Hz

limits of the data, the frequency response is predicted to

within the noise limits of thebasic measurement.

The steady-state response tests verified the slip flow

assumptions used in deriving the boundary value

equations and established an upper boundary on the

applicability of the model. Model comparisons are

excellent for Knudsen numbers up to around 0.6. For

values of _>0.6, free-molecule effects begin to

dominate the flow, and the model analyses are no longer

valid.

The model represents a fundamental contribution to

the understanding of flow behavior at the limits of the

continuum flow regime. The model allows

instrumentation designers to evaluate the responses of

pneumatic systems over a wide range of flow conditions

in a general and unified way without having to resort to

ad hoc or special case models.

APPENDIX A

DEVELOPMENT OF BOUNDARY

VALUE EQUATIONS

This appendix develops the boundary value equations

for the mathematical model. The basic strategy is to

linearize the fundamental equations of energy,

continuity, and momentum by assuming small input

perturbations. The partial differential equations are

reduced to ordinary differential equations using the

Fourier transform, and the boundary value equations are

developed in the frequency domain. To account for slip

and rarefied flow effects, a slip flow boundary condition

is allowed at the tubing walls. The resulting equations

are averaged across the cross-section of the tube to give

a one-dimensional model. For small tube diameters, no

radial pressure gradients exist; therefore, little loss in

generality occurs. The energy equation is decoupled

from the equations of momentum and continuity by

assuming the wave expansion in the tube to be

polytropic (ref. 12).

Coordinate Definitions and

Basic Assumptions

The sensor configuration is modeled as a straight

cylindrical tube with the internal volume of the pressure

transducer attached to its downstream end (fig. A-l).

The total tube length is L. A longitudinal coordinate, x,

is defined from the upstream (port) end of the tube, and

a radial coordinate, r, is defined starting at the center of

the tube. At each longitudinal station, the tube has

radius, R, not necessarily a constant for each

longitudinal station. The density and velocity

distributions, p(x, r, t), u(x, r, t), vary as a function of

longitudinal distance down the tube, radial distance
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from the center of the tube, and function of time. The

parameter U is the longitudinal velocity. Pressure

variations at the surface propagate as longitudinal waves

through the connective tubing to the transducer. The

wave propagation is damped by frictional attenuation

along the walls of the tubing. When the wave reaches

the downstream end of the tubing, it reflects back up the

tube and may either damp or amplify incoming pressure

waves.

For small tubes, flow occurs only in the longitudinal

direction. Assuming that the system is initially at rest

and input disturbances are small, the second-order terms

are neglected. In addition,

0P 0r 0P
0-7' L xj .... o (A-l)

The temperature distribution in the tube is assumed to

be forced by heat transfer from or to outside sources and

sinks. The wall temperature profile, Tw(X), is assumed

to be prescribed and known a priori. To simplify the

analysis at any given longitudinal station, the

temperature gradient is assumed to be constant. Thus,

02T
_ _ 0

0x 2
(A-2)

Later, because the problem will be cast as a finite-

element solution with a series of piecewise longitudinal

temperature variations, this assumption is not too
restrictive.

Unlike continuum flow conditions where fluid

elements stick to the tubing wall and the classical no-

slip boundary condition holds, for rarefied flow

conditions, the fluid velocity at the wall is not zero.

Large temperature gradients can result in the so-called

molecular creep effect. This effect is primarily a

molecular phenomenon where gas molecules adjacent to

the tube wall creep from the cold end of the tube to the

hot end. Furthermore, under low-pressure conditions,

such as those experienced at very high altitudes, tube

flow can become so rarefied that the fluid slips at the

tube wall. Modification of this boundary condition

makes the rarefied flow problem unique.

Energy Analysis

Based on the assumptions stated in the previous

section, the energy balance is (ref. 6)

0T TIF02T+ 1 071 0PP0C,_ = L_,_ 7 _ + 0-7
(A-3)

where _1 is thermal conductivity of the fluid, Cp is the

specific heat at constant pressure, P0 is the nominal

density, T is the local temperature, and P is the local

pressure. Solving for the time derivative of temperature

and taking the Fourier transform of equation (A-3),

T- jo_p 0 Pr Lor 2 +r _ PoCp
(A-4)

where the _t is the dynamic viscosity, and Pr = _Cp is
the Prantl number.

Defining the shear wave number,

ct m j3/2_/(0_ Po R2)/IJ'o and a nondimensional

/

longitudinal coordinate z = a_4/_ r where _t0 is the

bulk (radially averaged) viscosity of the fluid. Equation

(A-4) becomes

OZ 2 + Z _ + -- PoCp
(A-5)

Equation (A-5) is a form of Bessel equation of order

zero (ref. 13) and has a general solution of the form

T(x, r) = M(x) Jo [,_r O_R] + P--_ (A-6)
PoCp

where J0 is Bessel function of the zeroth order. The

parameter M(x) is evaluated using the boundary

condition at the wall, T(x, R) = Tw(X). Thus,

T(x, r) =

Tw(x) J0t_ro_l J

+ 1 jO--_[_r- _ ] --

P(x)

PoCp

(A-7)

Equation (A-7) is now written as a one-dimensional

radially averaged
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Tavg(X) =

_00n_00T(x,r)rdrde

ltR 2
(A-8)

J2E,,/-F__]}= Tw(X) 1+ lO[,_r

P(x) J2[_r _]

PoCp Jo[4r:'r ct]

where J2 is the second-order Bessel function. Because

no radial pressure gradients exist,

P(x.___)= _RgTw = 7-_I Tw
PoCp Cp y

(A-9)

where Rg is the universal gas constant, and y is the
ratio of specific heats. Equation (A-8) is approximated

as

T_g(X) = Tw(x) (A-IO)

Polytropic Analysis

To decouple the energy equation from the equations

of momentum and continuity, density and temperature

are written in terms of pressure by assuming that the

wave expansion process in the tube is polytropic

(ref. 12).

P = K p_= K' T_/(_-I) (A-ll)

Differentiating equation (A-11) with respect to

density

0P P _ 2
_---_= _ = Rg T = - cy

(A-12)

and temperature

0P _ P
- (A-13)

_T _-1 T

where c is the local sonic velocity. Differentiating

equation (A-10) with respect to temperature gives

Fp0c:(x)]:J0[,_r (t]}
a-? = - r(x---3)L P(x) ] l_ _IJ

IJo[  l}p(x)
- IiJ2E,/Tra] r(_)

(A-14)

Comparison of equation (A-14) with equation (A-13)

gives

= I (A-15)

Equation (A-15) is the same expression as derived by

Bergh using a different approach (ref. 6). Equations

(A-15) and (A-10) and the equation of state for an ideal

gas are used to replace the energy equation throughout

the remainder of this analysis.

Momentum Analysis

The Navier-Stokes momentum equation expressed in

cylindrical coordinates is (ref. 11)

3U(x, r) OP
P0 0t + 0x (A-16)

=kt[_r(rOU( x, 4_2U1_r r)) + 3 0X 2]

Using the equation of continuity for tube flow,

linearized for small disturbances

0U
_t + P0 _ = 0 (A-17)

and the polytropic equation (A-13),

0P 0P 0p _c2[ o_U]0"-7 = _ _" = - Y P0 _ (A-18)

to eliminate 0 2 U/Ox 2, and taking the Fourier transform

OP
j(o P0 U(x, r) + "_x

[1 3 P0 3x

(A-19)
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Collecting terms gives

10

j_ p00x

In addition,

(A-20)

PO(_/T) c2 = _ P0 Rg T = _PO (A-21)

where Po is the mean steady-state pressure at the local

temperature. Equation (A-20) becomes

-J"_o _r r Or (A-22)

jto Po0X

where _:p = [1 + 43J_ Po)g') is a rarefied flow correction

term and for air is very close to unity except for rarefied

flow conditions. Using a solution method similar to the

energy analysis performed earlier, eqhation (A-22) is

integrated with respect to the radial coordinate to give
(ref. 6)

OP

U(x,r)= N(x) Jo[a R] lcp_xx (A-23)
jtaP 0

The constant of integration, N(x), is solved for using

the boundary condition at the wall. For slip flow

conditions, the fluid velocity at the wall can be

decomposed into two parts: slip velocity and

thermomolecular creep velocity. Slip velocity is

proportional to the shear stress at the wall. The creep

flow is proportional to the longitudinal temperature

gradient at the wall. For laminar flow, the wall boundary
condition is (ref. 1)

U(x, R) = Uslip + Ucree p (A-24)

OU 3 BoRg OT w/Ox
=-o

The parameter, O, is referred to as the slip distance.

For a given material, this distance can be determined by

referring to empirical charts. The parameter go is the

local steady-state bulk viscosity in the tubing. Applying

equation (A-23) to equation (A-22), solving for the

parameter N(x), and simplifying the solution for slip
flow can be written as

U(x, r) =

J0 Ot l(p_ x

.... I .----- (A-25)

i r] o[ r]j ,o00Jo°t_ -o_jl a_

Jo °t R

+ r" r_-" OL r r'_l creep

/oL  J  ,L° JJ

where J l is the first-order Bessel function. Averaging

over the cross-section of the tube gives

Uavg(X) = U(x, r)r dr dO (A-26)

a ] 0PJ2[o_]+O _ Jl[a] l£p _X

a jtop0
J0[ct] - O _ J1[tx]

2 jl[a ]
+ 3BRg

Ot
4P0 Jo[Ct] - O _ Jl[a]

OT w

Ox

Because no radial pressure gradients occur, the

polytropic process equation is used to give

0P

OTw O"x _ _- l TOP

o-S=_ - _ POx
OT

(A-27)

In addition,

Uavg (A-28)

_p J2to_]+ORJl[l_ ] +j¢.o_ _---_

OP

0x

j(o P0

J0[tx] - O F Jl [(x]
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Defininga propagation factor

Fp (A-29)

the momentum equation for slip flow conditions can

finally be written as

0P F 2
= jto0-"x y Fp P0 Uavg(X)

(A-30)

(_ontinuity Analysis

Based on assumptions in eq. (A-l), the radially

averaged continuity equation is

0P

3p _ 0t
Ot OP

_p

In addition,

(A-31) is

_ y _P 1 (OUavg 1

o, c :-Pot, 0x )
(A-31)

the Fourier transform of equation

0 U avg)

Differentiating equation (A-32) with respect to x, and

substituting into equation (A-31)

[r] 202p(x)- O}S-_cPP(x)
Ox 2

(A-33)

Equation (A-33) is the final form of the wave equation

which describes the slip flow propagation of pressure

waves in the tube.

Evaluation of the Downstream

Boundary_ Condition

At the downstream end of the tube where the pressure

wave exits the pressure tubing and enters the transducer

volume, the equation of momentum (eq. (A-32)) still

holds, but the equation of continuity must be modified.

Here, the integral form of the equation is used and

jtoPV

jtop V _ P0 Ac

Uavg(L) = P0 Ac (A-34)

where V is the entrapped transducer volume, and A c is
the cross-sectional area of the tube at the exit to the

transducer. Substituting equation (A-34) into equation

(A-32), the downstream boundary condition becomes

2 2

_'_ x = L = tOc2Fp AcV Pt. (A-35)

Equations (A-27), (A-28), (A-33), and (A-35) are the

collected boundary value equations.

APPENDIX B

SOLUTION OF THE BOUNDARY

VALUE EQUATIONS

As derived in appendix A, the pressure wave

propagation equations are

IF]2_2p(x)- (O---cP P(x)
3x 2

The downstream boundary condition is

(B-l)

2 2

3P _ to Fp V PL (B-2)
OXlx = L C2 Ac

Pressure at the upstream boundary is prescribed.

Because several parameters of the boundary value

equations vary as a function of the longitudinal

temperature distribution in the tube, the equations

generally cannot be integrated outright. Conceptually,

the set of boundary value equations can be integrated by

formulating the problems as a finite difference solution.

Unfortunately, the wave equation is hyperbolic, and the

downstream boundary condition is parabolic (ref. 12).

This mis-match of equation types makes the problem ill-

conditioned for finite difference methods. Depending on

the ratio of the time step to the distance step, various

degrees of artificial damping will be introduced into the

system by a finite difference formulation. This artificial

damping makes extracting the true physics from

numerical artifacts extremely difficult.
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Instead, a better approach is to integrate the boundary

value equations with respect to x, assuming that the gas

properties remain constant along the region of

integration. This longitudinally averaged model can be

solved in closed form in the frequency domain to give a

fundamental solution. Using this fundamental solution

as a building block, the problem can be solved

recursively starting at the transducer end and working

toward the surface end of the tube. If the properties of

the flow are re-evaluated at each new node, then one

may effectively allow for the construction of a solution

in which the flow properties are arbitrarily variable as a

function ofx. This finite-element approach is an integral

method that is not subject to the numerical problems

encountered with the finite difference methods.

Fondamental Solution of

the Boundary_ Value Equations

Across the tube, assume constant flow properties.

Integrating equation (B- 1) with respect to x gives

(.-,,

Applying the upstream and downstream boundary

conditions to solve for Art and Bet, substituting the

results into equation (B-3), and simplifying gives

P(x,to) (B-4)

x-L v_ ]

[co._h[,,r_-g-]- "XTg-_sinh[_r'c x-L__T_]

; ---r - "k
Evaluating equation (B-4) at x = L gives the end-to-

end solution:

PL(O)) (B-5)

[ ,v-o)rp r
= e°(c°)Lcosh[_or, L] + __sinhmcoF

AcC L o

Equation (B-5) is a frequency response model where

the complex spectra are given as a function of the sensor

geometry, the frequency of the input sinusoid, and the

propagation factor, rt,. Molecular effects are all

embedded in Fp. If molecular effects are ignored,
equations (B-4) and (B-5) are identical to the

fundamental solutions developed by Bergh, et al.,

(refs. 6, 7).

Recursive Solution of the

Boundary_ Value Equations

The fundamental solution is limited to applications

where the temperature gradients are small, and the tube

radius is constant. However by using equations (B-4)

and (B-5) as building blocks, solutions allowing

longitudinal variation of the fluid properties and

complex tube geometries can be constructed. The

solution is recursive and moves from the downstream

boundary to the upstream boundary. The solution is

performed assuming n solution elements. These

elements are not necessarily evenly spaced. The

junctions of elements are referred to as nodes. Within

each element, the fluid properties are assumed to be

constant, but properties between nodes are allowed to

vary. At each node, the equation of continuity is

satisfied, giving a new downstream condition. For

generality, the tube radius is allowed to vary, and a

volume is assumed to be entrapped at each node. These

entrapped volumes can be used to model the effects of

tube joints, fittings, or other devices, such as water traps.

First, consider a two-node system with node n being

the transducer node and node n-I being the adjacent

upstream node. The configuration being analyzed is

depicted in figure A-1. At node n-l, the integral form of

the continuity equation is

1
j(o Vn- 1 Pn- I [

_- m.. 2- fUn-I "_0 Acn-I _/Y Cn_l

aC._lJLN_l ky x,

Vn Pn
+

ac._, (_/y) c2n

Substituting the downstream

(eq. (B-2)) for U n_ I yields

dx

(B-6)

boundary condition
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0P(n - 1, to) _ Vn- l 2F'fto Pn- l .°n
2

Cn- 1t_x A cn - 1

2
A% %2 1 Cn

+Vn_ i C2n JLn|

2
¢n- 1 Vn

+ 2 Vn Pn
C n - 1

-t (B-7)

P dx

To evaluate the integral in equation (B-7), the

fundamental solution (eq. (B-4)) is used. The

fundamental solution is valid from node n-1 to node n

because the downstream boundary condition is identical

to that of the fundamental solution. Performing the

integration, simplifying, and collecting terms equation

(B-7) reduces to

tO 2 F 2

0P(n- 1) _ V%_1 Pn-lPn_l (B-8)

Dx A%_ ] Cn _ 12

where V e is the effective volume parameter which

accounts for the impedance of the downstream tube and

volume as well as the volume at node n-1.

Ven-l = Vn_ 1 (B-9)

2
Cn- I Vn

2
c n

to n
1 siohE r n,o]]V n r'pn _nn

Ac n Cn

+ cosh[toFpn L._]

The form of the new boundary condition given by

equation (B-8) is identical to the original boundary

condition at node n. By induction on the fundamental

solution (at node n), the solution at node n-1 is

Pn_l(to) = (Pn_2(to)) (B-10)

+ to

Ac.- i cn - i i c n_ 1J)

To establish generality, the process must be repeated

an additional time. Repeating the process at node n-2,

the downstream boundary condition is

--0Pn-2t)x = -03 Vn- 2FPn-2Acn _ 2 cn2_ 2 [Pn-2 (B- 11)

2

+Acn-lCn-2 f_L n-I2 P dx
Vn - 2Cn - I n- 2

Cn-2Vn Pn-
2 1

Ca 1 Vn

2
c a_ tAc. tL.

+-T---- L P dx

Cn Vn - 1 Ln -

2
Vn Cn- 1

2 Pn
+ Vn- 1 c n

However, from the solution at node n-1,

f 2f,Ac n Cn- 1

Pn-I "_ Pdx
Vn_ 1 Cn 2 Ln_L

2

Vn ca- 1 Pn
2

Vn- 1 c n

(B-12)
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In addition, equation (B-12) becomes the new

boundary condition at node n-2.

r

0Pn-2 Vn-2 FP"-2 _Pn-2 (B-13)
0x - 0 2

Acn_ 2 Cn-2 [
2

Acn-1 Cn-22 J_Z -lPdx
Vn_ 2 Cn_ 1 ,-2

, }Cn-2 Ve n l

+ "_ - - Pn-I

Cn- I Vn- 2

This form of equation (B-13) is identical to the

boundary condition at node n-I (eq. (B-7)). Again by

induction on the solution at node n-l, the solution at

node n-2 can be written as

Pn_2(°_) = (Pn_3(£o) ] (B-14)

Ven - 2 rPn - 2
+ co sinh

Acn_ 2 Cn-2

where the effective volume at node n-2 is

Ven_2 = Vn_ 2 (B-15)

' [[ Ln_ ]Cn-lVea_t cosh (t)l"p. I c n-+ 2

Cn- 1

1
+ sinh

Ven-I FPn-|
f,O

Ac n_ , Cn - 1

I [+ cosh £Orpn_ l Cn- 1 J

+00
Ven- 1 rp._ t

Acn- 1 cn - I

General Solution Usin_

Recursive Formulation

The general end-to-end frequency response is given

as the complex product of the frequency responses at the

individual nodes. By induction on the previous

solutions, the solution at the ith node is

PiCco) (B-16)

Pi - 1((D)

Vei Fp---2sinh[OFp_ _]

where the effective volume is

V ei = V i (B-17)

[ 'i-i]]I sinh toFp_ +
OJ Vei÷l Fpi÷_ Ci+

Aci÷ 1 Ci+l

Li+ 1]Ve'+l FPi+' sinh (OFpi÷l ci_- _+ tO Ac,+ ' c. 7?

with V% = Vn. In addition,

PL(OJ)

Po(¢O)
(B-18)

PI (£0) P2 (t°) Pn- 1(£°) Pn(tO)

Po(O)) Pl(o)) "" Pn_2(t.o ) Pn_l(o))

=l-I 1
Ve'rP'sinh[(OFp,_i]i=l cosh[(Orpi___]+(OAc, c._T
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Equations (B-17) and (B-18) represent a finite-

element solution of the boundary value problem. The

boundary value equations have been analytically

integrated at each element based on simplifying

assumptions. The method is not subject to the numerical

problems encountered with the finite difference

methods. The solution assumes that a tube surface

temperature profile is prescribed at each node, and

the fluid properties, namely the temperature, sonic

velocity, and dynamic viscosity, are evaluated as a

function of the prescribed temperature using the energy

equation (A- 10).

APPENDIX C

STEADY-STATE RESPONSE OF

"IUBE RESPONSE MODEL

FOR RAREFIED FLOW

CONDITIONS

If the general solution (eq. (B-18)) is evaluated at low

frequency with large longitudinal temperature gradients

and rarefied flow conditions, the gain does not

approach 1 as it does for continuum flow conditions.

Instead, the hot end of the tube has a higher pressure

magnitude than the cold end. This equilibrium pressure

gradient is a well-known result. The equilibrium

behavior of the model for rarefied flow conditions is

best understood by looking at the momentum equation

for a cross-section of the pressure tubing.

Evaluating the steady-state behavior of equation

(A-28) using the final value theorem yields (ref. 16)

jco (C-l)
Uss = limco_O

ot _ 120 _-1 2 Jli¢_] }+O _ Jl[5l+jo) PO _ 5

3P

jcop o

J0ot - 0 _ Jl 5

Using the series expansion form for Bessei functions

yields

¢m

(-I)k
Jn[IX] = Z k[ _'n'_-k), (2) n+2k

k=O

(C-2)

Then,

J0[5] Jl[ a] 5
limco_O limco_ 0 2'

J2[or.] a 2
=--_p= 1limto _ 0 8 '

(C-3)

In addition,

Us s 1 2 0 52 3 Po _- 1
= +_-_-+jt04 PO _ _xx (C-4)

but for equilibrium flow conditions, there must be no net

flow across any cross-section of the tube, and Uss = O.
As a result,

a2( _)3P 3 120_-1 aP
-_-1+4 _xx =-J°_4Po _ ax

(C-5)

2
but 5 2 = -jc0 RP0. Using the polytropic process

120

energy equation (eq. (A-13)) after some simplification

yields

3P 2 OT
Ox 6 l-t0 3x

= (C-6)
R 2 T

3T2
6 _o Rg TO _x

Po

If the ratio of slip distance to mean free path is

defined as e = O/X, then

2
2 12 T O _,

K = XRg R2 p2' R = e _ = e
(C-7)

Equation (C-6) becomes

_P

ax
m

P rc(l +4 e 1%) T
(C-8)
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Clearly, based on equation (C-8), the normalized

pressure gradient is proportional to the normalized

temperature gradient and mean properties of the flow

given by _:_ This equation is used to evaluate the range
of Knudsen numbers for which the rarefied flow model

is valid.
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TABLES

Table 1. Frequency response test matrix.

Run

Diameter, Length,

in. in.

Thermocouple readings along tube, °F

1 2 3 4 5 6

1 0.066 12

2 0.066 12

3 0.066 12

4 0.066 12

5 0.066 12

6 0.066 12

7 0.066 12

8 0.066 12

9 0.033 12

10 0.033 12

11 0.033 12

12 0.033 12

13 0.033 12

14 0.033 12

15 0.033 12

16 0.033 12

74.0 74.0 75.0 74,0 77.0 84.2

74.8 225.1 338.0 344.0 218.0 85.1

77.8 309.0 496.0 503,0 312.0 89.1

79.4 381.0 636.0 644.0 385.0 90.1

80.4 383.0 639.0 647,0 387.0 92.9

78.0 311.0 501.0 508.0 315.0 92.4

77.0 228.0 340.0 348.0 221.0 88.9

77.0 77.2 77.4 78.0 77.4 88.4

74.0 74.0 75.0 74.0 77.0 84.2

77.0 233.3 354.0 360,9 230.0 91.8

79.8 316.3 501.2 511.8 312.0 105.3

81.6 392.6 641.5 652.3 389.8 113.3

81.7 392.4 641.4 653.1 390.0 113.5

79.8 317.0 502.3 512.2 312.4 105.4

75.0 231.6 352.0 359.9 230.0 91.5

77.0 77.0 77.3 77,2 77.0 88.2

Diameter,

in.

Table 2. Rarefied flow condition test matrix.

Tube temperatures, °F

Hot Cold

Pressure, psf

Minimum Maximum

0.014 499.700 75.600 0.28 1952.2

0.014 950.700 75.600 0.56 1953.3

0.033 499.700 75.600 1.68 1953.3

0.066 433.000 81.000 1.87 1951.2

0.066 953.300 83.900 3.50 1949.1

0.080 949.800 84.200 1.69 1951.2

0.092 431.800 82.100 1.99 1949.6

0.092 501.200 76.800 2.80 1951.0
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Figure 1. Knudsen number ranges for continuum, slip, and molecular flow regimes.
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(b) Equipment layout.

(c) Speaker mounted in sound chamber and the heater apparatus and test plate.

Figure 2. Concluded.
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Figure 3. Typical phase-modulated output waveform used for frequency response tests.
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(a) Equipment layout.

Figure 4. Apparatus used for the static response and rarefied flow tests.
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(b) Front view of vacuum oven.

(c) Rear view showing pressure fittings.

Figure 4. Concluded.
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Figure 9. Comparison of model frequency response to experimental results (L = 12 in. and d = 0.033-in. tubing
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